您现在的位置是: 首页 > 毕业论文模板 毕业论文模板
解决问题的策略总结_解决问题的策略
tamoadmin 2024-09-03 人已围观
简介1.解决问题的策略六年级上册思维导图2.六年级数学《解决问题的策略》的教案3.小学数学教学中解决问题的策略和方法“解决问题的策略——设”是苏教版六年级上册的教学内容,这一节是在学生学习了“从条件想起、从问题想起、列表、画线段图”等解决问题策略之后的又一问题解决策略。课件由实例求大、小瓶的容量,通过设都是大瓶或都是小瓶,根据题目中的数量关系,将大瓶替换成小瓶或是将小瓶替换成大瓶,从而求出大、小瓶的容
1.解决问题的策略六年级上册思维导图
2.六年级数学《解决问题的策略》的教案
3.小学数学教学中解决问题的策略和方法
“解决问题的策略——设”是苏教版六年级上册的教学内容,这一节是在学生学习了“从条件想起、从问题想起、列表、画线段图”等解决问题策略之后的又一问题解决策略。
课件由实例求大、小瓶的容量,通过设都是大瓶或都是小瓶,根据题目中的数量关系,将大瓶替换成小瓶或是将小瓶替换成大瓶,从而求出大、小瓶的容量。
设计思路:
课件通过对比两种不同方法,领悟设策略的要领;接着进行辨析,哪些问题解决中可以用设策略,哪些不可以用,进一步提炼策略;最后通过两道变式练习题,拓展了策略的运用与掌握。最后做全课的总结,深化策略意识,学会数学思想。
解决问题的策略六年级上册思维导图
六年级上册数学解决问题的策略怎么做如下:
从条件想起(综合法),从问题想起(分析法)例:运来香蕉180千克,运来苹果是香蕉的1/6,运来的梨比苹果的1/3多10千克,运来梨多少千克?
回顾:从条件想起的策略是看题目中给了哪些条件,由其中的两个条件可解决什么问题,然后把解决的新问题当作已知条件和题中未用的条件再组合最总解决问题。
小学如何学习
示范,是教者用教法为学生的学法做榜样;摹仿,是学生领悟到精当之处,并运用它学习新的同类的知识。
小学生掌握学习方法,依据儿童善于摹仿的心理特点,无论是入学初期还是进入中高年级,都需要教师有意的、准确而明晰的给学生作出示范。
把理解某类课文所用的方法、步骤,把弄懂某人、某物、某事所设计的一系列思考问题,把突破某一难点、关键引导学生进行分析推理的过程,展现在学生眼前,让学生从教师教法中得到启示,领悟教法的精当处,激发墓仿心理,进而用教师示范的方法。
去学习新的同类的知识,能起到“教法举一,学法反三”的作用从“示范”到“摹仿”,和从指明到尝试不同的是,这是一种无形的指是学生心理内部从感知到理解的活动过程,是通过看不见摸不着的思维活动来实现导的。
回顾,是自我发现,自我体验,反省自身运用过的学习方法;概括,是在回顾的基础上,对学习同类知识运用过的学习方法,进行评价、加工,纳入学法体系的总体结构。
学生掌握学习方法,有的由教师指明后尝试,有的由教师示范后墓仿,有的则既不指明、尝试,又不示范墓仿,而是由学生自己去探索、创造。即便是教师指明了的,示范过的,有时学生还会修改某些部分,创造适合于自身特点的方法。
一个学生,知识的基础,个性的发展,大脑的功能,不尽相同,应当鼓励学生根据自身的特点,寻求适合自身特点的不同方法。
学有规律而无定法。符合学生个性特点的学习方法,往往是学生在实践中自我探索的。有的学生学习的效果其所以特别好,除勤奋刻苦外,就是他创造了适合自身特点、行之有效的学习方法。
六年级数学《解决问题的策略》的教案
解决问题的策略六年级上册思维导图内容如下:
1、发现问题
(1)细心观察,从生活和学习中发现问题的存在。
(2)描述问题的具体内容,包括问题的大小、性质、影响等
2、分析问题
(1)分析问题产生的原因,从不同角度寻找可能的原因。
(2)分析问题的相关因素,理清头绪。
3、制定解决方案
(1)根据问题性质,选择合适的解决方案。
(2)制定具体的实施步骤和时间安排。
4、实施解决方案
(1)按照制定的方案实施解决。
(2)及时调整方案以应对变化。
5、检查结果
(1)检查解决方案的实施效果。
(2)评估解决方案的有效性和可行性。
6、总结反思
(1)总结解决策略应用的经验和教训。
(2)优化解决问题的策略,提高解决问题的能力。
六年级上册解决问题的策略
1、画图策略:在解题过程中,运用画图的方法,画出与题意相关的示意图,借助示意图来帮助推理、思考,这是小学数学解决问题中最常用的一种策略。常见的画图方式有:线段图、集合图等。
2、转化策略:转化策略就是把自己没有学过的问题转化成自己学过的问题来解决。
3、列表策略:列表策略一般适用于比较规整的问题,比如一些排列组合的问题,可以尝试用列表的方式来解题。
4、枚举策略:枚举策略一般用于比较复杂的问题,比如找出一个图形中的隐含条件,或者列出所有可能的情况,逐一排查。
5、替换策略:替换策略一般用于替换掉题目中的某个元素,从而简化问题。
6、逆推策略:逆推策略一般用于逆向思维解决问题,比如一些反推的问题。
小学数学教学中解决问题的策略和方法
作为一位杰出的教职工,有必要进行细致的教案准备工作,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?以下是我为大家收集的六年级数学《解决问题的策略》的教案,欢迎大家分享。
六年级数学《解决问题的策略》的教案 篇1一、教学目标分析
解决问题的策略替换的教学目标是让学生在经历解决实际问题的过程中,初步学会用替换策略分析数量关系,在对解决实际问题过程的不断反思中,感受替换策略的价值,进一步发展分析、综合和简单推理能力,积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。解决问题不仅是为了获得解决具体问题的方法和答案,更重要的是让学生形成解决问题的基本策略。本课的教学重点是用等量替换的方法使原来复杂的问题转化成较为简单的问题。在落实教学目标时,要注意把握以下几点。
发展学生的策略意识,让学生真切感受到运用策略的必要性。如可先借助学生熟知的曹冲称象故事引入,唤醒学生潜在的与替换有关的经验,然后呈现换杯情境,引导学生感受新问题的复杂性,产生应用替换策略的意识,体验用替换策略解决问题的优越性。
引导学生经历策略形成的完整过程,让学生深刻领会策略内涵。教师要准确定位策略教学的目标,不能满足于让学生掌握替换策略,而应让学生体验策略的形成过程,在经历策略形成过程中获得对策略内涵的认识与理解,让策略的学习过程成为发展策略意识的途径。
处理好认识策略和运用策略的关系。解决问题,特别是解决新颖的问题须要运用策略,解决问题的策略是在解决问题的活动中形成和积累的。尽管认识策略是为了更好地运用策略,运用策略解决问题体现了学习策略的价值,但是教学时没有必要将过多的时间用在引导小学生熟练运用策略解决相关的实际问题上,而应引导学生多元、深刻地认识和理解策略,感受策略给问题解决带来的便利,真正形成爱策略、用策略的意识。
二、教学过程
(一)重温故事,感受替换策略
故事:电脑播放曹;中称象动画。
提问:曹;中是怎样称出大象重量的?
小结:曹冲用石头代替大象,称出了大象的重量。
曹冲称象的方法是替换策略的具体应用,将曹冲称象的故事引入课堂,既能为学生的探究指明方向,有助于学生提取替换策略,又能让学生初步感受用策略解决实际问题的好处,自觉地参与到学习中去。
(二)自主探索,内化替换策略
1.出示问题,补充条件。
电脑动画出示情境:曹操得胜归来,要把珍藏的720毫升美酒分给几个儿子。将这些酒倒入6个小杯和1个大杯,正好都倒满。小杯和大杯的容量各是多少毫升?
(1)学生说自己的想法。(多数学生会发现缺少条件。)
(2)教师引导学生先独立思考应该补充什么条件,再在小组内交流。
(3)小组代表汇报补充的条件,教师根据学生汇报的内容进行整理、分类,重点整理、呈现以下内容:
①大杯的容量是小杯的()倍。
②小杯的容量是大杯的。
③大杯的容量比小杯多()毫升。
④小杯的容量比大杯少()毫升。
例题直接给出了小杯的容量是大杯的,而此处呈现的情境改编了例题,让学生发现情境中缺少条件并补充条件。这样,学生的关注点将自然地聚焦到大杯和小杯的容量之间的关系上。这样的情境能为学生学习替换策略提供空间和机会,使替换的策略呼之欲出,又非常自然。
(三)体验策略,解决问题
1.倍数关系。
(1)补充条件:小杯的容量是大杯的。讨论:这个条件给我们提供了哪些信息?根据现有的条件,能解决问题吗?
(2)小组合作解决问题,并把解决问题的思路整理出来,在纸上画一画替换的过程,并算一算大杯、小杯的容积各是多少。
(3)教师请部分学生上台演示解决问题的过程,并说说自己是怎样替换的、替换的依据是什么。
(4)如果在前面的探究过程中,学生只想到了将大杯换成小杯、将小杯换咸大杯两种方法中的一种,教师应引导学生思考有没有;其他替换方法?
研究数学问题的方式要能顺应学生的思维特点,激发学生主动探索的欲望,给学生自由思考、表达的空间。这样,学生的兴趣才会浓厚起来,思维才会活起来。本环节旨在唤醒学生生活中换的经验,让学生借助画一画、算一算,体验用替换策略解决问题的过程,体会运用替换策略的必要性?和合理性,感受策略的'价值,增强策略意识。
(5)强调检验。教师指出,把6今小杯替换成2个大杯,或者把1个大杯替换咸3个小杯,这样做到底对不对,还须要检验。强调检验时要看结果是否符合题中的两个已知条件。
本课教学任务较重,检验虽然不是教学重点,但教材把检验安排在写答句的前面,有两层意思:一是先经过检验确认结果再写答句是解决问题的程序,也是学生应养成的良好习惯。二是一种新的方法是否可行、是否可信要检验,这是严谨的态度与科学的精神,是教学中应该倡导和培养的。考虑到本环节要检验的有两个等量关系,在此多花一点时间和学生共同完成检验是非常必要的。
(6)对比归纳。教师引导学生讨论把大杯换成小杯和把小杯换成大杯之间有什么共同的地方,并引导学生得出:它们都是先通过替换把两种量变成一种量再解决问题;在替换过程中,要抓住等量关系进行替换;替换是解决问题的一种有效策略。
接受新知,需要一个反复的过程。本环节反复强化替换策略,让学生通过交流、画图、演示,对比、归纳等数学活动,体验替换策略的妙处,经历用替换策略解决问题的过程,旨在让学生的思维能力得到进一步的发展。
2.相差关系。
(1)补充条件:每个大杯比小杯多装160毫升。讨论:补充这个条件后,和刚才的问题相比,有什么不同?还能用替换策略解决吗?如果把1个大杯替换成1个小杯,倒酒的时候会出现什么情况?
(2)学生交流,教师相机借助多媒体动画演示换杯的过程。
(3)提问:将1个大杯换咸1个小杯,少装多少毫升酒?7个小杯,一共装了多少毫升酒呢?每个小杯可以装多少毫升酒?每个大杯呢?怎样列式?
(4)思考:还有其他替换方法吗?如果把6个小杯替换咸6个大杯,又会出现什么情况?每个大杯比小杯多装多少毫升酒?7个大杯一共能装多少毫升酒?每个大杯、小杯分别能装多少毫升酒?怎样列式?
组织教学时,教师应正确把握和使用教材,让学生对什么情况下用什么方法替换更合适进行体验,然后借助电脑动画演示替换过程,帮助学生理清思路。
(5)思考:怎样检验替换后得出的结果是否正确?
(6)小结:无论是将大杯替换成小杯,还是将小杯替换成大杯,都是通过替换把两种量变成一种量;在替换时,要考虑总容量是变多了还是变少了,多了多少或少了多少。
在两个相差关系的量之间进行替换时,学生比较难理解为什么替换以后总量变化了、总量是怎样变化的。教师通过电脑课件演示替换的过程,能引起学生关注替换后总容量的变化,进而找到解决问题的关键。教学时,还可让学生用实物杯子摆一摆、在纸上画一画具体的替换过程,然后说说为什么可以这样替换。
(四)学以致用,应用替换策略
1.小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。8块达能饼干的钙含量相当于l杯牛奶的钙含量。每块饼干的钙含量是多少毫克?l杯牛奶呢?你能解决这个问题吗?
2.同样是达能饼干,包装也有不同。2个同样的大袋和5个同样的小袋里一共装有75片达能饼干。每个大袋比小袋多装20片,每个大袋和小袋各装多少片饼干?(学生解答完后,集体讨论(75+205)(2+5)、(75-202)(2+5)分别反映了怎样的替换过程。教师结合学生的回答,用电脑展示替换过程。)
本环节旨在让学生应用替换策略,进一步体会替换过程中每一步的意义,沟通替换操作与数学表达式之间的联系,建立用替换策略解决某些问题的模型。只有真正经历策略形成的完整过程,并对策略进行深刻的认识与领悟,才有可能更好地借助方法与策略的迁移,解决新问题。
(五)总结提升,拓展替换策略
1.组织学生回顾用替换策略解决问题的一般思路,并举出生活中用替换法解决问题的实例。
2.展示教师收集的问题:
①啤酒促销,3个空瓶可以换1瓶啤酒。
②集齐若干个百事可乐瓶盖可以换明星海报、CD架、水壶、明星T恤衫和游戏卡等。
③肯德基20周年庆典,举办从电子杂志中找拼图换取电子优惠券活动。
空瓶回收等实际生活中的例子能有效地沟通数学与生活的联系,拓展替换策略的内涵数量之间的倍数关系、相差关系可以用替换,具体的物品也可替换,让学生真正感受到替换策略在生活中的广泛应用。
六年级数学《解决问题的策略》的教案 篇2教学目标:
1、使学生初步认识并理解替换的策略,学会根据题中两个数量之间的倍数关系或相差关系,用替换的思想解决实际问题。
2、使学生在解决实际问题过程不断反思中,感受替换策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:掌握用替换的策略解决问题的方法。
教学难点:感受替换策略对于解决特定问题的价值。
教学过程:
一、创设情境,初步感知替换策略。
1.动画引入,学生续讲《曹冲称象》的故事。从曹冲是用与大象同样重量的石头换大象,引出替换的话题。
2.举出现实生活中替换的例子。通过为小明调换商品初步感知替换策略。
3.揭示课题,引入例1。
二、合作交流,探索学习替换策略。
出示例题1的情境:小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的1/3。小杯和大杯的容量各是多少毫升?
(一)分析题意,弄清条件与问题。
1.你是怎样理解小杯的容量是大杯的1/3这句话的?
2.引发思考,激起尝试的欲望。启发提示:这里6个小杯和1个大杯的果汁才是720毫升,要求小杯和大杯的容量两个问题,能直接求吗?能否将大杯容量与小杯容量两个量与总量720毫升的关系转化成其中一个量与总量的关系呢?
(二)组织学生合作交流,先议一议怎样用替换的策略解决问题?再尝试列式计算。
(三)汇报尝试情况,归纳用替换的策略解决问题的方法。指名学生汇报自己的想法,板演出算式,并讲一讲每步式子的意义。
借助媒体演示总结:
1.大杯换成小杯或小杯换成大杯的依据是什么?
2.把大杯换成小杯:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?也就是说9个小杯容量是720毫升,那就可以先求出每个小杯的容量。
3.把小杯换成大杯:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?720毫升果汁可以倒3个大杯。可以先求出每个大杯的容量。
(四)检验。师引导:验证求出的结果是否正确,想一想可以怎么检验?
①把6个小杯的容量和1个大杯的容量加起来,看它是否等于720毫升;
②还要检验大杯的容量是不是小杯容量的3倍。(板书检验过程)
总之,检验时要看所求出来的结果是否符合题目中的两个已知条件。
(五)小结:替换的关键就是把两种杯子替换成一种杯子。得出依据倍数关系进行替换,果汁总量不变、杯子的数量变了。
(六)学习依据相差关系进行替换。将例1中大、小杯的倍数关系改为大杯比小杯多20毫升你还会替换吗?
1.议一议,这时还能不能替换?
2.讨论如果将7个杯子全看作小杯(或大杯)果汁的总量还是720毫升吗?是变多了还是变少了?
3.试列式解答。
4.小结与例一不同之处:根据大小杯的相差数进行替换时,总量变了,杯子数没有变。
三、拓展应用,巩固运用替换策略。
1.溜冰场:智力填空(分别用倍数关系和相差关系进行替换)
①○+○+○+△+△=14,△=○+○
○=()△=()
②☆比○多1,☆+○+=10
○=(),☆=()
2.试一试:三种量间倍数关系的替换题(图略)
3.练一练:
①练习十七第1题巩固据倍数关系进行替换。
读题,弄清题意:集体分析,说出不同的替换方案;尝试口头列式解答,并反馈。
②教材例1后练一练巩固据相差关系进行替换。
读题,弄清题意;集体分析,说出不同的替换方案;试列式解答并反馈。
四、总结反思,优化替换策略。
1.今天学习了一种新策略是什么?运用替换这一策略解决实际问题,你觉得需要注意些什么?(学生总结反思)
2.师点一点:替换的策略就是将要求的某一问题用另一个问题替代。用替换策略解答的题目特征及替换时的注意点。
解决问题是传统教学中的的应用题教学,源于学生的生活实际,又回到学生的生活中;是学生在学习中遇到困难,找到一条绕过障碍的出路,达到可以解决问题的答案。解决问题有利于发展学生的创新精神和解决问题的实践能力,能让小学生用原有的知识,技能和方法迁移到课程情景中解决新的问题,从而培养学生解决问题的能力。
策略一:实际操作
儿童的智力活动是与他对周围物体的作用密切联系在一起的,也就是说,儿童的理解来自他们作用于物体的活动。小学数学的学习是一项重要智力活动。特别是数学具有高度的抽象性,而小学生往往缺乏感性经验,只有通过亲自操作,获得直接的经验,才便于在此基础上进行正确的抽象和概括,形成数学的概念和法则。这在教学实践中的例子很多。例如,一年级教学元、角、分的认识,由于学生缺乏实践经验,长期以来是个难点。由于加强了实际操作,学生对元、角、分的进率就很清楚。中年级教学周长和面积时往往容易混淆,加强实际操作以后,学生对两个概念获得明确的表象,弄清两者的区别,计算错误也大大减少。高年级教学约数和倍数这一单元时,概念多术语也多,学生容易弄混。有些教师使用奎逊耐木条或计数板,引导学生进行操作,大大减少学习的难度,弄清概念的正确含义和求最大公约数、最小公倍数的方法。因此,无论从理论上或从实践上看,加强实际操作都是十分必要的。可以说,加强实际操作是现代的数学教学和传统的数学教学重要区别之一。正如皮亚杰所指出的,传统教学的缺点,就在于往往是用口头讲解,而不是从实际操作开始数学教学。只有加强实际操作,才能体现智力活动源泉这一基本思想。
策略二:从日常生活中寻求解决问题的答案
小学数学知识与学生有着密切的联系。教学时要让学生感到生活之中处处有数学。“辨认方向”的教学,就是创设了日常生活中习以为常的辨认方向的情景,引入新课的。让学生感觉学习方向的必要性,并让学生在模拟街区中解决实际问题的矛盾中探究东南、东北、西南、西北四个新方向。由此教师引导学生学会用数学的眼光观察周围的事物,想身边的事情。在学生获得新知以后,教师又要求学生运用所学知识去寻找周围的小朋友分别坐在自己的哪个方向;去帮助动物园的叔叔、阿姨绘制动物园示意图;去探究指南针里面的方向板的作用。这样,既有利于学生对知识的掌握,也可诱发学生的创新意识,拓展创新空间。
策略三:问题简单化和从问题中找条件
教学中教师运用生动有趣的材料为全体学生积极主动地参与创设了良好的学习氛围。
1.让学生在现实情境中体验和理解数学
从老师女儿四次喝牛奶这一情境,根据每次喝牛奶的量,让学生根据一些数据提出若干数学问题,并且有学生自己尝试解决,通过“提出问题-解决问题”这一个过程,学生懂得了“移多补少”的知识。这样的教学过程设计,能使学生体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握了必要的基础知识与基本技能。
2.鼓励学生独立思考、引导学生自主探究、合作交流,还原学生的主体地位
比如教师及时提出“如何来求平均数?”,通过小组讨论,得到求平均数应用题的数量关系。教师起到引导的作用,学生是真正的学习主体。在这样一种学习氛围中,通过”问题解决“这一教学手段,串起了整个学习新知的过程。
3.教学内容来源于生活
整堂课中用的数据来源于生活,问题来源于学生,突出“应用性”。通过平均分、平均身高、每季度用水情况等发生在学生身边的事,使学生实实在在地感受到“数学”就在我们的身边。
策略四:培养学生初步的应用意识和解决问题的能力
教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。例如,教师可以引导学生解决如下的开放性问题。
例:27人乘车去某地,可供租的车辆有两种,一种车可乘8人,另一种车可乘4人。
⑴给出3种以上的租车方案;
⑵第一种车的租金是300元/天,第二种车的租金是200元/天,哪种方案费用最少?
实践活动是培养学生进行主动探索与合作交流的重要途径。在本学段,教师应组织学生开展生动有趣的活动,使学生经历观察、操作、推理、交流等过程。
策略五:从问题中寻找规律,发现规律,运用规律
比如:对于50,98,38,10,51这些数,请用大一些、小一些、大得多、小得多等语言描述它们之间的大小关系;并用“>”或“<”表示它们的大小关系。
又如:1200张纸大约有多厚?1200名学生大约能组成多少个班级?1200步大约有多长?等等。学生从中都能领悟到一些规律。
数学中解决问题还需要用运用各种能力:如理解问题的能力,空间思维的想象能力,新旧知识的联系和问题的切入点等。但要使学生成为有效的问题解决者,既是小学数学教学的目标,又是对数学教师的挑战。在解决问题的教学中应提倡多样化,调动学生的积极性,鼓励学生大胆尝试。把问题的主动权交给学生,提供学生更多地展示属于自己的思维方式和解题策略的机会,提供给学生更多的解释和评价自己思维结果的权利。问题的策略充分体现了学生的原有经验,有利于培养学生的思维能力,提高了学生探索知识的意识,体现了学生解决问题的能力。